276°
Posted 20 hours ago

Funtime Gifts LED Mini Lava Volcano Lamp, Integrated, 4.5 W, Plastic, Red

£8.495£16.99Clearance
ZTS2023's avatar
Shared by
ZTS2023
Joined in 2023
82
63

About this deal

In addition to serving as a means of translation, and in this way enhancing understanding of why information is (or is not) scientifically credible, boundary objects (Cash et al. 2003) Volcano Light is acream, marble look quartz material that comes in amatte & polished texture. It is supplied to Polish Granite by Compac company specialising in stone slab production. Why Volcano Light is the perfect material for stone kitchen worktops? The interior of many volcanoes stay hot for a long time. This heat can warm underground water in the vicinity of the volcano. The heated water then reaches the surface to form geysers, fumaroles, bubbling mud pools and hot springs. They also create occurrences of sulphur and other mineral deposits.

Metzger P, D’Ercole R, Sierra A (1999) Political and scientific uncertainties in volcanic risk management: the yellow alert in Quito in October 1998. GeoJournal 49:213–221 Another key distinction that has developed as VALS have been designed and implemented around the world concerns two distinct institutional roles awarded to volcano observatories. In many countries, volcano observatories are classified as state or gederal services. This is the case for example in New Zealand and the USA, where such observatories are part of national research agencies required to provide a public interface (GNS and USGS respectively), in Japan and Iceland, where observatories are run from within National Meteorological Agencies, and in Mexico, where volcano observatories are run from within the Centro Nacional de Prevención de Desastres. These institutional arrangements and associated legal remits predispose the relevant observatories to interface with end users, since they are required to provide and prioritise public functions (typically of civil protection). However, in other countries, volcano observatories are situated within institutes with a predominantly scientific focus. In Ecuador, Italy and France, for example, the Instituto Geofisico, the INGV and Le Institut de Physique du Globe de Paris (IPGP) (respectively) are positioned in the science domain, which requires a primary focus on producing quality science. It is possible that institutional remits that require this more exclusive focus on scientific goals may result in VALS design and implementation less attuned to an interface function between scientific and end user communities. Papale’s ( 2017) defence of a clear division between scientific and operational functions, for example, could be interpreted in the light of this distinction, since he is based in an institute that focuses on producing scientific, rather than public service outcomes. We raise this point to note that this article draws from research conducted exclusively with USGS scientists and the associated range of USGS VALS end-users. Since the USGS is required to provide a public interface function, these research participants are likely to see the role of the volcano observatory framed in terms of direct utility serving society. Wynne B (1996) May the sheep safely graze? A reflexive view of the expert-lay knowledge divide. In: Lash S, Szerszynski B, Wynne B (eds) Risk, environment and modernity: towards a new ecology. Sage, London, pp 44–83 Kato K, Yamasato H (2013) The 2011 eruptive activity of Shinmoedake volcano, Kirishimayama, Kyushu, Japan—overview of activity and volcanic alert level of the Japan meteorological agency—. Earth, Planets Space 65:2Every volcano has a diverse range of hazards in different spatial and temporal combinations, making the individual behaviour of each unique. This can make understanding the activity and issuing a warning for a volcano alert a highly complex and context-specific process. Many hazards can occur within close proximity of a volcano, whether it is active or not, in different locations (geographically), and at different times. Most are excluded from the VALS, which relates only to the occurrence of volcanic/eruptive unrest/activity, and must apply to every volcano. Many scientists stated that VALS should convey information about all volcanic hazards, whether they proximal to the volcano, i.e. volcano-centric, or distal. Some expressed the view that a warning can only be truly issued after the event has begun (CVO collaborator 2), which means that the only way to measure if a lahar has developed, or where an ash cloud is moving, is to monitor them individually. A number of the observatories have developed independent alert level systems tailored to the nature of a range of these hazards, including volcanic gases (in particular seen at HVO), lahars (CVO), volcanic ash clouds, volcanic ashfall (AVO) and hydrothermal activity (YVO). The unique individual behaviour of a volcano, each with differing hazards in differing spatial and temporal relations makes monitoring, understanding the activity and issuing a warning for a volcano alert highly complex processes. Applying this concept to analyse the use of VALS offers to clarify the role of underlying drivers in the way that volcanic crisis communication has operated in practice both prior to and during volcanic emergencies from 2007 to 2009. The USGS VHP is used as a case study. Operating across five observatories, which have been established to monitor and research volcanic phenomena and risk that manifest a wide range of behaviours in different parts of the world, this program engages with a range of different cultures, communities and user and stakeholder groups. Between 2007 and 2009, 93 semi-structured interviews Footnote 3 were conducted with both observatory scientific personnel and relevant user groups associated with the AVO, CVO, Hawaii Volcano Observatory (HVO), Long Valley Volcano Observatory (LVO) (re-established in 2012 as the California Volcano Observatory CalVo), and Yellowstone Volcano Observatory (YVO). In addition to scientists employed in observatories, interview participants were drawn from user groups including other federal agencies such as US Emergency Managers (country and state levels), the National Weather Service, US Forest and National Park managers, the Federal Aviation Administration, Volcano Ash Advisory Centre staff, local town managers and police and also included local and national media (for a full list, see Fearnley ( 2011, pp. 108–109)). How explosive a volcanic eruption is depends on how easily magma can flow or trap gas. If magma is viscous, it is able to trap a large amount of gas and can produce explosive eruptions.

Over 80 volcano observatories across the globe are tasked with monitoring and communicating timely and useful information about the behaviour of a volcano (WOVO 2017). This assessment and communication role is structured around volcano early warning systems, constituting a range of communication techniques developed by volcanologists and policy makers to provide information to populations at risk from volcanic hazards and to allow them to seek safety, both locally and regionally (Peterson et al. 1993). Such information is crucial to the work of decision-makers responsible for safety (Mileti 1999), who need insight into when and where the volcano may erupt; the magnitude, style and duration of the eruption; likely hazards and expected location; and the effects of volcanic hazards at the local, regional and global scale (Mileti and Sorenson 1990). One of the key elements of a volcano early warning system, and the most widely disseminated through the media, is a volcano alert level system (VALS), which is summarily defined as a “series of levels that correspond generally to increasing levels of volcanic activity” (Gardner and Guffanti 2006, p. 2). Globally, scientists are typically responsible for determining and disseminating the appropriate alert level, although some countries have differing responsibilities within the actors involved (WOVO 2018). Deploying VALS requires that the scientists involved consider how best to impart the scientific uncertainty associated with monitoring data to user groups, in sometimes emotive conditions (Harris 2015; Leonard et al. 2008), whilst also contending with the technological constraints of the monitoring techniques available, budget limitations and political sensitivities (Potter et al. 2017; Fearnley et al. 2018). VALS research to date has focused almost entirely on improving the credibility and consistency of information that comes from scientists operating in a national context. Largely as a result, VALS have been subject to increased standardisation at national and international levels with the explicit aim of improving information (Potter 2014; Fearnley et al. 2012).The cream, marble look Volcano Light by Compac can be supplied in a ‘polished’ texture. This means ascintillating gloss that beautifully reflects the light and highlights the true colours & pigments embedded within the product. The polished texture is one of the most popular surface finishes, mostly present among quartz worktops and granite worktops, although ceramic suppliers also adopt this finish for their stone slabs. These surfaces are easy to clean and prevent all liquid absorption. About Compac Small changes in the shape of a volcano such as bulging may indicate that magma is rising. Accurately measuring the summit and slopes of a volcano is one of the most important tools used for forecasting an eruption. Temperature changes in surface lakes or the groundwater near a volcano also can be a valuable early detection tool, although not all large changes in temperature are related to volcanic eruptions. In practice, a VALS is a communication initiation tool, an instrument to develop coordination plans and to provide general awareness about the state of the volcano, rather than about a specific hazard. If this communication occurs regularly, then it may actually be surplus to requirements. That is, VALS can appear overly complicated given that the concept is simply to gain attention to an event and its anticipated impacts, and valuable time can be spent on deciding alert levels that might better be used to initiate the necessary communication to provide scientific information. It is through multi-valent communication outside of the VALS that producers and consumers can establish meaningful interpretations of warnings, even if they are based in different contexts.

Roach AL, Benoit JP, Dean KG, McNutt SR (2001) The combined use of satellite and seismic monitoring during the 1996 eruption of Pavlof volcano, Alaska. Bull Volcanol 62(6–7):385–399 Perrings C, Duraiappah A, Larigauderie A, Mooney H (2011) The biodiversity and ecosystem services science-policy interface. Science 331(6021):1139–1140 Peterson DW, Tilling RI, Kilburn CRJ, Luongo G (1993) Interactions between sceintists, civil authorities and the public at hazardous volcanoes. In: Active Lavas. UCL Press, London, pp 339–365 Another lesson here is that informal methods of communication such as telephone calls were a valuable means of facilitating timely interaction and the translation of scientific uncertainty one on one to end-users, since they did not technically involve issuing official warning information. Establishing meaning in alert levelsLatour B (1999) Pandora's hope essays on the reality of science studies. Harvard University Press, Cambridge Compac stone isn’t only suited for standard uses & applications e.g. quartz worktops. There is an infinite range of decorative possibilities and solutions. Dining table tops, BBQ tops, paved shopping centre floors or cladded bar tops & walls. This company brings pigments, resins, ground stone + water-resistant agents, then combines them to create glistening marvels that also act as functional, practical tools facilitating everyday kitchen use.

Asda Great Deal

Free UK shipping. 15 day free returns.
Community Updates
*So you can easily identify outgoing links on our site, we've marked them with an "*" symbol. Links on our site are monetised, but this never affects which deals get posted. Find more info in our FAQs and About Us page.
New Comment